MIGUEL COBA

DEPLOYING
ELIXIR

Deploy to AWS, Azure, and GCP.
Create clusters and orchestrate
them with Kubernetes

Table of Contents

About this book
Preface

Prerequisites

macOS
Homebrew

asdf

Erlang and Elixir
Phoenix
PostgreSQL

Elixir/Phoenix sample application

Create a Phoenix application

Run the application using mix

Run the application using Elixir Releases
Run the application using Docker

Elixir clustering with libcluster

Nodes and Clusters

Clustering in Erlang

Clustering in Elixir

Clustering with libcluster.
Cluster.Strategy.Epmd Strategy
Cluster.Strategy.LocalEpmd Strategy
Cluster.Strategy.ErlangHosts Strategy
Cluster.Strategy.Gossip Strategy

libcluster in Kubernetes

PostgreSQL on Kubernetes

Prerequisites
PostgreSQL and Docker
PostgreSQL and Kubernetes

Deploying Elixir to a Kubernetes cluster

Kubernetes
Container Registry
Cluster.Strategy.Kubernetes.DNS Strategy

Publish our Elixir Docker image to Docker Hub

Kubernetes configuration

Scaling your application

Kubernetes ConfigMaps and Secrets
Adding a Secret to our Kubernetes cluster

Deploying to Microsoft Azure

© © © 00 O U1 U1 U1 = b W W W W W N =

U1 U1 B B W W W W W W N R R e R e e e e e e
N O © 0 © 0GB R RN O O O N9 Y 9Bk w o

Azure Kubernetes Service (AKS) 57

Azure Resources and Resources Groups 57
Create a Container Registry. 58
Create a Kubernetes cluster 60
Connect to Kubernetes cluster with kubectl 62
Deploy our PostgreSQL database to AKS 63
Create a Secret on AKS 65
Deploy our Application to AKS 66
Scaling the AKS cluster 70
Deleting the Resource Group 71
Deploying to Amazon Web Services 73
Elastic Kubernetes Service (EKS) 73
Elastic Container Registry (ECR) 73
Create a Kubernetes cluster in ECR 75
Connect to Kubernetes cluster with kubectl 76
Deploy our PostgreSQL database to EKS 76
Create a Secret on EKS 79
Deploy our Application to EKS 79
Scaling the EKS cluster 84
Deleting your EKS cluster 85
Deploying to Google Cloud Platform 87
Google Kubernetes Engine (GKE) 87
Authenticate gcloud to Google Cloud 87
Google Cloud Projects 89
Google Cloud Billing Account 90
Google Artifact Registry 91
Create a Kubernetes cluster in GKE 94
Connect to Kubernetes cluster with kubectl 96
Deploy our PostgreSQL database to GKE 97
Create a Secret on GKE 99
Deploy the Application to GKE 99
Scaling the GKE cluster 103
Deleting your GKE cluster 104
Afterword 106
Appendix A: Source Code 107
Appendix B: Install Docker 108
Install Docker Desktop with brew 108
Start Docker Desktop 108
Test Docker CLI 108
Install Minikube 109

Install Minikube with brew 109

Test Docker CLI
Signup for Docker Hub
Appendix C: Microsoft Azure
Signup for Microsoft Azure
Install the Azure CLI
Login with the Azure CLI
Appendix D: Amazon Web Services
Signup for Amazon Web Services
Create an IAM user
Install the AWS CLI
Install eksctl
Appendix E: Google Cloud Platform (GCP)
Signup for Google Cloud Platform
Google Cloud concepts
Install the Google Cloud SKD

109
109
112
112
115
115
117
117
125
131
132
134
134
141
142

About this book

Deploying Elixir: Advanced Topics by Miguel Cobd
https://www.miguelcoba.com
Copyright © 2022 Miguel Coba

All rights reserved. No portion of this book may be reproduced, in any form, without permission
from the copyright holder, except as permitted by copyright law.

For permissions contact: miguel.coba@gmail.com
This book was written in Visual Studio Code with Asciidoctor on macOS Monterey.
1st Edition

Version: v1.0

https://www.miguelcoba.com
mailto:miguel.coba@gmail.com

Preface

This book is the second part of "Deploying Elixir", a book I wrote in 2021.

"Deploying Elixir" was downloaded by more than 1000 developers all over the world and many of
those approached to me with requests to write about topics not covered in it. Those topics were
more advanced and often encountered in professional environments.

After realizing that there was enough interest in the Elixir community to learn about deploying
Elixir in professional environments, I set a plan to write about it.

I present to you "Deploying Elixir: Advanced Topics" a book where I'll show you how to deploy
Elixir using technologies used frequently in Enterprises and Startups.

My goal is that, after reading this book, yowll have a solid understanding of Elixir clustering,
Kubernetes clusters and orchestration, and have practice deploying Elixir projects in Cloud
Platforms like Amazon Web Services, Microsoft Azure, and Google Cloud Platform.

Elixir clustering with libcluster

In this chapter I'll show you how to create an Elixir cluster.

Nodes and Clusters

Normally, when we create an Elixir application with mix phx.new, we start it using mix phx.server
and access it by opening a browser to http://localhost:4000. We see our application in the browser
and everything just works.

But, just below everything, is the Erlang Virtual Machine (VM) running our application and taking
care of making it work.

An running instance of the Erlang Virtual Machine is called a Node.
When we run our Elixir app, we are running it in a single Erlang node.

If the Node dies for some reason, all the process that the Erlang Virtual Machine is managing will
die. In this example, if our Node dies, our Elixir application dies too. For some applications this is
not convenient and better availability is desired.

One way of increasing the availability of an application is by running several copies at the same
time, so that if one dies, the others can still provide the functionality the application provides.

A collection of nodes connected and working together is called a Cluster.

The Erlang VM has native support to connect nodes so that they are aware of each other and can
communicate among themselves.

It is extremely simple to connect Erlang nodes.

Clustering in Erlang

Let’s see a quick example of connecting Erlang Nodes. Open two shell terminals.

In the first one write er1 -sname nodel. You’ll see this:

erl -sname nodel
Erlang/0TP 24 [erts-12.3.1] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1]
[jit]

Eshell V12.3.1 (abort with 7G)
(nodel@smaug)1>

You can see that the prompt shows the node name in the form name@host. In my case, my laptop is
called smaug. The name is the value you passed to the -sname argument to erl. Your prompt will
show your computer name instead.

http://localhost:4000

In the second terminal write erl -sname node2. You’ll see this:

erl -sname node2
Erlang/0TP 24 [erts-12.3.1] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1]
[jit]

Eshell V12.3.1 (abort with 7G)
(node2@smaug)1>

You have now two instances of the Erlang Virtual Machine running on your computer. That means
that two different nodes are running now. But they don’t know each other.

Let’s connect them. In the first terminal write this (replacing the name for your second node’s
name):

(node1@smaug)1> net_adm:ping('node2@smaug').
pong

If you now write nodes(). on both nodes, you’ll see that the nodes now know each other.

First node:

(node1@smaug)2> nodes().
[node2@smaug]

Second node:

(node2@smaug)1> nodes().
[nodel1@smaug]

This, technically, is your first Erlang Cluster. Yay!

Clustering in Elixir

In Elixir the process is very similar. Open two shell sessions.

In the first one write, iex --sname nodel. You’ll see this:

iex --sname nodel
Erlang/0TP 24 [erts-12.3.1] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1]
[jit]

Interactive Elixir (1.13.4) - press Ctrl1+C to exit (type h ENTER for help)
iex(node1@smaug)1>

10

In the second one write, iex --sname node2. You’ll see this:

iex --sname node2
Erlang/0TP 24 [erts-12.3.1] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1]
[jit]

Interactive Elixir (1.13.4) - press Ctrl+C to exit (type h ENTER for help)
iex(node2@smaug)1>

Ok, now we have two nodes each one running Elixir on top of the Erlang Virtual Machine. Let’s
connect them.

In the first terminal write Node.connect(:node2@smaug). As you see the command now uses Elixir
syntax. You should see this:

iex(nodel1@smaug)1> Node.connect(:node2@smaug)
true

Let’s verify that the nodes are connected. Run Node.list() on both nodes.

First node:

iex(nodel1@smaug)2> Node.list()
[:node2@smaug]

Second node:

iex(node2@smaug)1> Node.list()
[:nodel@smaug]

Now you have an Elixir cluster composed of two nodes.

Showing node information with Phoenix

Before continuing to more advanced examples let’s modify our Phoenix application to show the
node and cluster information directly in the browser.

Open your lib/neptune_web/controllers/page_controller.ex file and change the index/2 function to
be like this:

11

lib/neptune_web/controllers/page_controller.ex

def index(conn, _params) do
this_node = node()
other_nodes = Node.list()

render(conn, "index.html", %{this _node: this_node, other nodes: other_nodes})
end

This function is getting the node and cluster details from the Erlang Virtual Machine where our
Phoenix application is running and passing them to the index.html template to be rendered.

Now modify 1ib/neptune_web/templates/page/index.html.heex and change its contents to these:

lib/neptune_web/templates/page/index.html heex

<section class="phx-hero">

<h1>Deploying Elixir: Advanced Topics</h1>

<p>This is a node in a cluster of Erlang Nodes</p>
</section>

<section class="row">
<article class="column">
<h2>This node</h2>

<%= @this_node %>
</1i>

</article>
<article class="column">
<h2>0ther nodes</h2>

<%= for node <- @other_nodes do %>

<%= node %>
</1i>
<% end %>

</article>
</section>

Now

* refresh the page if you’re using mix phx.server
* rebuild the release with MIX_ENV=prod mix release --overwrite if you’re using Elixir Release

* rebuild the Docker image with docker build -t neptune . if you’re using Docker

The app will now show the cluster nodes' details on it:

12

@® localhost:4000

§2\ Phoenix Framework

Deploying Elixir: Advanced Topics

This is a node in a cluster of Erlang Nodes

This node Other nodes

o neptune@smaug

The source code for this section is on the elixir-nodes-info branch.

Clustering with libcluster.

As an exercise, it is good to know how to connect nodes manually to create a cluster, but this is
clearly not something yowll do on production. Nobody is going to login to some remote server
everytime to open a iex session and connect manually all the nodes in the cluster.

This needs to be automated so that the cluster forms itself correctly without human intervention.

To solve this problem, Paul Schoenfelder created the libcluster library to automatically form
clusters of Erlang nodes.

This library has several ways of forming clusters depending on which strategy you select for
determining nodes membership to the cluster.

Let’s configure our sample app to use libcluster.

Add the libcluster dependency to your mix.exs:

defp deps do
[

...
{:plug_cowboy, "~> 2.5"},
{:1libcluster, "~> 3.3"}

]

end

And download it with mix deps.get. Then modify your application.ex and add the
Cluster.Supervisor to the list of children:

13

https://github.com/bitwalker

def start(_type, _args) do
topologies = Application.get_env(:libcluster, :topologies) || []

children = [
Neptune.Repo,
NeptuneWeb.Telemetry,
{Phoenix.PubSub, name: Neptune.PubSub},
NeptuneWleb.Endpoint,
{Cluster.Supervisor, [topologies, [name: Neptune.ClusterSupervisor]]}

opts = [strategy: :one_for_one, name: Neptune.Supervisor]
Supervisor.start_link(children, opts)
end

We are ready to use libcluster to create our Elixir cluster. But first we need to configure it so that it
knows which nodes are going to be part of the cluster.

libcluster has several strategies to do this. Let’s try each of those.

You can find the source code for this section in the branch elixir-1ibcluster.

Cluster.Strategy.Epmd Strategy

This strategy relies on epmd (Erlang Port Mapper Daemon) to form a cluster from a configured set of
nodes.

epmd is started automatically on a computer if a node is started in distributed mode (meaning that it
was started with the -sname or -name parameters) and no instance of the daemon exists. You don’t
need to worry about it. It will be there.

This strategy requires us to explicitly list all the nodes we want to be part of the cluster. Let’s do it.

Open config.exs and add this just before the last import_config line:

config :libcluster,
topologies: [
epmd_example: [
strategy: Elixir.Cluster.Strategy.Epmd,
config: [
hosts: [:node4000@smaug, :node4001@smaug]
]
]
]

Now we can start two nodes with the names node4000 and node4001 and libcluster will ensure to
form a cluster with them.

14

https://www.erlang.org/doc/man/epmd.html

A couple of considerations.

Normally we start the app with mix phx.server, but here we need to specify the node name for each
node we start so instead of using mix phx.server we are going to start the app with iex --sname
<NODE_NAME> -S mix phx.server.

In dev mode, port 4000 is hardcoded in config/dev.exs. To start two instances of our application we
could change the port manually before starting a each node. A better way is to start the application
in prod mode taking advantage of the config/runtime.exs configuration that reads the port to start
on from an environment variable.

Let’s take the second approach and start the nodes in prod mode and setting the required
environment variables.

Start the first node:

export SECRET_KEY_BASE=$(mix phx.gen.secret)

export PORT=4000

export PHX_SERVER=true

export DATABASE_URL=ecto://postgres:postgres@localhost/neptune_prod
export MIX_ENV=prod

iex --sname node4000 -S mix phx.server

You should see this a warning saying that can’t connect to node40@1@smaug. That’s expected as we
haven’t started the second node:

Erlang/0TP 24 [erts-12.3.1] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1]
[jit]

Generated neptune app

03:38:18.221 [info] Running NeptuneWeb.Endpoint with cowboy 2.9.0 at :::4000 (http)
03:38:18.224 [info] Access NeptuneWeb.Endpoint at http://example.com:443

03:38:18.239 [warning] [libcluster:epmd_example] unable to connect to :node4001@smaug
Interactive Elixir (1.13.4) - press Ctrl+C to exit (type h ENTER for help)
iex(node4000@smaug) 1>

Start the second node:

export SECRET_KEY_BASE=$(mix phx.gen.secret)

export PORT=4001

export PHX_SERVER=true

export DATABASE_URL=ecto://postgres:postgres@localhost/neptune_prod
export MIX_ENV=prod

iex --sname node4001 -S mix phx.server

You should see this:

15

Erlang/0TP 24 [erts-12.3.1] [source] [64-bit] [smp:8:8] [ds:8:8:10] [async-threads:1]
[jit]

03:38:46.848 [info] Running NeptuneWeb.Endpoint with cowboy 2.9.0 at :::4001 (http)
03:38:46.854 [info] Access NeptuneWeb.Endpoint at http://example.com:443

03:38:46.872 [info] [libcluster:epmd_example] connected to :node400@@smaug

Interactive Elixir (1.13.4) - press Ctrl+C to exit (type h ENTER for help)
iex(node4001@smaug) 1>

Now run Node.list() in both nodes to confirm that they are connected.

In the first node:

iex(node4000@smaug)1> Node.list()
[:node4001@smaug]

In the second node:

iex(node4001@smaug)1> Node.list()
[:node4000@smaug]

If you open http://localhost:4000 you’ll see the sample app running in the first node:

® localhost:4000

&2\ Phoenix Framework

N

Deploying Elixir: Advanced Topics

This is a node in a cluster of Erlang Nodes

This node Other nodes

o node4000@smaug o node4001@smaug

And if you open http://localhost:4001 you’ll see the sample app running in the second node:

16

http://localhost:4000
http://localhost:4001

® localhost:4001

E‘a\ Phoenix Framework

—
N

Deploying Elixir; Advanced Topics

This is a node in a cluster of Erlang Nodes

This node Other nodes

o node4001@smaug o node4000@smaug

Good. We have a cluster with two Elixir nodes.

The main disadvantage of this strategy is that we need to hardcode all the names of the nodes that
we want to include in the cluster.

You can find the source code for this section in the branch elixir-libcluster-epmd

Cluster.Strategy.LocalEpmd Strategy

Get the full book to read this section

Cluster.Strategy.ErlangHosts Strategy

Get the full book to read this section

Cluster.Strategy.Gossip Strategy

Get the full book to read this section

libcluster in Kubernetes

The remaining strategy I want to discuss is the one that allows us to create an Erlang cluster inside
a Kubernetes cluster.

Before we can deploy our Elixir application to Kubernetes we need to see how we can provide our
application with a database.

In the next chapter we are going to see how we can deploy a PostgreSQL server to Kubernetes.

17

When we finally deploy our Elixir cluster we’ll configure it to use this database.

18

